Integrated Remote Sensing Tools for Timely Predictions of Alfalfa Nutritive Value

Reagan L. Noland
M. Scott Wells
Craig C. Sheaffer

North American Alfalfa Improvement Conference
July 14, 2016
Introduction: Importance of Alfalfa

– Environmental value – ecological services

– Economic value – livestock feeding
 • Yield
 • Nutritive value

Photo credit: Scott Bauer
Introduction: Current Hay Prices

<table>
<thead>
<tr>
<th>Hay Grade</th>
<th>Bale type</th>
<th>Price ($/ton)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Prime (> 151 RFV/RFQ)</td>
<td>Small Square</td>
<td>234</td>
<td>125</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Large Square</td>
<td>176</td>
<td>150</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Large Round</td>
<td>No reported sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1 (125 to 150 RFV/RFQ)</td>
<td>Small Square</td>
<td>115</td>
<td>105</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Large Square</td>
<td>139</td>
<td>110</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Large Round</td>
<td>91</td>
<td>67</td>
<td>135</td>
</tr>
<tr>
<td>Grade 2 (103 to 124 RFV/RFQ)</td>
<td>Small Square</td>
<td>No reported sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large Square</td>
<td>101</td>
<td>80</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Large Round</td>
<td>66</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>Grade 3 (87 to 102 RFV/RFQ)</td>
<td>Small Square</td>
<td>No reported sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large Square</td>
<td>70</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Large Round</td>
<td>67</td>
<td>45</td>
<td>100</td>
</tr>
</tbody>
</table>

(UW-Extension, 2016)
Nutritive Value vs. Maturity

Relative Characteristics

- forage yield
- stem yield
- forage digestibility
- leaf yield

Maturity stage
- vegetative
- bud
- first flower
- full-flower
- post-flower

(ASA, 2011)
Quantifying Alfalfa Maturity

Mean Stage by Weight (MSW) and Mean Stage by Count (MSC)

Vegetative
growth stages 0-2

Bud
growth stages 3-4

Flower
growth stages 5-6

Kalu and Fick (1981)
Quantifying Alfalfa Maturity

Mean Stage by Weight (MSW) and Mean Stage by Count (MSC)

Maturity Predicts Nutritive Value

Vegetative growth stages 0-2
Bud growth stages 3-4
Flower growth stages 5-6

Kalu and Fick (1983)
Introduction: Remote Sensing

- Quick, non-destructive assessment
- Information at the field scale
- Optimize timing of harvest
 - (as well as other field operations)

Left photo credit: Don McCullough
Introduction: Canopy Reflectance

Before canopy closure

After canopy closure

Relative Reflectance

Wavelength (nm)

350 450 550 650 750 850

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

University of Minnesota
Driven to Discover™
Introduction: Remote Sensing

Canopy Visible and Near-infrared Reflectance Data to Estimate Alfalfa Nutritive Attributes Before Harvest

Patrick J. Starks,* Michael A. Brown, Kenneth E. Turner, and Bradley C. Venuto

Jeremy Joshua Pittman 1,2,*, Daryl Brian Arnall 2, Sindy M. Interrante 1, Corey A. Moffet 1 and Twain J. Butler 1

Application of local binary patterns in digital images to estimate botanical composition in mixed alfalfa–grass fields

Keenan C. McRoberts a,*, Brent M. Benson b, Erika L. Mudrak c, David Parsons d, Debbie J.R. Cherney e

a Department of Animal Science, Cornell University, 149 Morrison Hall, Ithaca, NY 14853, USA
b 203 Solutions LLC, 414 Water Street, Unit 1808, Baltimore, MD 21202, USA
Cornell Statistical Consulting Unit, Cornell University, 809 Savage Hall, Ithaca, NY 14853, USA
c School of Land and Food, University of Tasmania, Private Bag 98, Hobart, Tasmania, Australia
d Department of Animal Science, Cornell University, 329 Morrison Hall, Ithaca, NY 14853, USA
Objectives

• Explore potential to use known vegetative indices to predict alfalfa maturity and nutritive status

• Develop new predictive models from spectral data
Methods: Design

- A Randomized Complete Block Design was superimposed on a uniform stand of alfalfa at Rosemount, MN.
 - 2014: 3rd cutting (8 replications)
 - 2015: 1st and 3rd cutting (12 replications)
- Treatments: 10 varying stages of alfalfa maturity.
Methods: Data Collection

- Collect canopy reflectance data prior to destructive sampling
 - FieldSpec 4 (ASD Inc.) measured raw reflectance (350-2500 nm)
- Harvest all plots for yield, nutritive status, and maturity assessment
- Nutritive analysis performed with a Perten NIRS system
- Select wavebands correlated to response variables based on AIC (Akaike Information Criterion)
- Fit linear models to the selected predictors.
Results: Growth Staging Still Works

\[R^2 = 0.86 \]

\[R^2 = 0.85 \]
Results: Known Indices

NDVI: Normalized Difference Vegetative Index

- Common spectral index used in agriculture
- Saturates with canopy closure in alfalfa.
Results: Known Indices

GNDVI: Green Normalized Difference Vegetative Index

*Best correlation between a published index and crude protein

\[R^2 = 0.44 \]
Limiting economic factors for spectral sensors

• Spectral Range
• Spectral resolution
• Number of bands
Results: New models

• From the full range of spectral data

• Identified 8 wavebands that best predicted crude protein and minimized AIC

• Checked effects of adding environmental covariates
 • Growing Degree Units (GDUs) since cut

• Reduced model to improve utility
 • Lower spectral range (VIS/NIR)
 • Lower resolution (10 nm bands)
Full Model: 8 bands from 350-2500 nm

CP estimated by 8 wavebands

$R^2 = 0.86$

$AIC = 892.8$
Full Model with GDU covariate

CP estimated by 8 wavebands with GDU covariate

$R^2 = 0.93$

$AIC = 641.5$
Reduced Model: 3 bands from 350-1100 nm

CP estimated by 3 wavebands

$R^2 = 0.76$

AIC = 892.8
Reduced model with GDU covariate

$R^2 = 0.91$

$AIC = 678.8$
Same 3 bands applied to NDFd

NDFd estimated by GDUs and 3 wavebands

$R^2 = 0.89$
2015 model applied to 2014 data

Predicted vs Actual Crude Protein (2014)

Predicted vs Actual Crude Protein (2014)

$R^2 = 0.8442$
2015 model applied to 2014 data

Predicted vs Actual NDFd (48 hr in-vitro)

R² = 0.5791
Conclusions

- Canopy reflectance, integrated with climate information, can inform predictions of alfalfa nutritive value.

- New models using 3 wavebands in the VIS/NIR regions with GDUs as covariate maintained strong predictability and near-optimum model fit.

- The accuracy of passive reflectance measurements is affected by light conditions. Active sensors developed from these results would avoid this issue.
Acknowledgements

• Dr. M. Scott Wells
• Dr. Craig C. Sheaffer

• Eric Ristau
• Joshua Larson

• Farm Intelligence
• Farm Nutrients
References

Questions?