Rust

Uromyces striatus Schroet. Donald L. Stuteville

PLANT CULTURE

Growth Chamber/Greenhouse

Media	. Sand or soil mixture
Temp/Light	. 22 to 25°C; 1 hour photoperiod
No. of Plants	. 30 to 50 per replication
No. of Reps	. 3 minimum

INOCULUM CULTURE

Source	To reduce the possibility of culturing a single
	race of the fungus, urediniospores should be
	collected from several locations
Collection	For initial field collections or small tests,
	urediniospores for inoculum may be shaken or
	brushed from rusted plants; however, for larger
	tasks cyclone spore collectors (3,6) are very
	helpful
Storage	Urediniospores can be stored a few weeks under
	refrigeration (about 4°C) with little loss in
	germination; urediniospores newly produced in
	lab (98% germination) and stored at -20°C in
	vials covered with Parafilm germinated 88, 80,
	69, 38, and 13% after 4, 8, 12, 16, and 23
	months, respectively; the latent period (days
	from inoculation to first pustule) was 9 days with
	inoculum stored up to 9 months and increased to
	14 days following inoculation with
	urediniospores stored 21 to 23 months (l);
	urediniospores may be stored several years in
	liquid nitrogen without loss of viability (4)
Increase	To insure high quality inoculum, use
mercase	
	urediniospores freshly harvested from plants
	grown in the greenhouse or lab

INOCULATION PROCEDURES

Plant Age	Plants 3 to 5 week old, or older with vigorous
	regrowth
Method	. To prepare 100 mL of inoculum add 100 mg
	urediniospores to 100 mL of distilled water to
	which two drops of Tween 20 have been added;
	this provides about 3.5×10^5 spores mL- 1 ; it is
	necessary to stir the mixture for at least 20
	minutes to disperse the spores; the suspension is
	sprayed onto plants until run-off

INCUBATION

Infection	Inoculated plants are maintained at 100% relative humidity (kept wet) at 25°C in darkness for 24 hours to permit infection; enclosure in a humidity chamber, or in plastic boxes (6), or plastic bags, will provide adequate humidity
Temperature	Temperature affects the genetic behavior of resistance; best expression of susceptibility is found when plants are kept at 25°C after infection
Photoperiod	

RATING

Score the most severely infected leaflet on each plant.

1 Resistant	No symptoms
2 Resistant	.Flecks, plus possibly a few small closed pustules
3 Susceptible	.A few flecks and closed pustules plus several small
	open pustules
4 Susceptible	Many small open pustules
5 Susceptible	.Many medium to large open pustules

Plants in classes 1 and 2 are considered resistant because they prevent reproduction of the rust fungus.

The percentage of resistant plants and ASI can be used for comparisons with check cultivars.

CHECK CULTIVARS

	Approximate Expected Range of Resistance (%)	Acceptable Reaction (%)
Resistant		
MSA-CW3An3	50	40-60
Susceptible		
Saranac	1	0-10
Moapa 69	10	5-15

Values for resistant standards include the total of l's and 2's.

DISTRIBUTION AND SEVERITY OF RUST

Alfalfa rust, Uromyces striatus Schroet.

(Click on the map above for a larger version. See also the KEY)

SCIENTISTS WITH EXPERTISE

Name	. James Elgin, Jr.
Address	. USDA/ARS/NPS
	Bldg. 005, Rm 115,
	BARC-W
	Beltsville, MD 20705
Phone	. 301-344-3618

Name Kenneth T. Leath Address USDA/ARS

U.S. Regional Pasture Lab

Curtin Rd.

University Park, PA 16802

Phone 814-863-0945

CORRELATION TO FIELD REACTION

High if the same races are involved; however, some plants resistant in the field are susceptible in the lab (6).

RACES

There are different races of Uromyces striatus.

HELPFUL INFORMATION

Some cyclone spore collectors and inoculation equipment developed for cereal rust research (2) work equally well with alfalfa rust. The cyclone collector designed by Cherry and Peet (3), which attaches to a vacuum cleaner, is especially useful for the rapid collection of spores. This and various other spore collectors (2) are available from G-R Electric Manufacturing Co., 1317 Collins Lane, Manhattan, KS 66502.

ALTERNATIVE METHODS

McMurtrey and Elgin (5) outline procedures for inoculating plants with dry urediniospores diluted with talcum powder. Latent-period data provide a less subjective measurement of resistance than infection-type data. They are highly correlated (r = 0.97, P < 0.0001) (6). However, the collection of latent-period data requires daily examination of plants during pustule development.

REFERENCES

- 1. Al-Hamdany, M.A. 1980. Overwintering of *Uromyces striatus* Schroet. and some effects of temperature, photoperiod, moisture, and leaf age on alfalfa rust development. Ph.D. diss. Kans. St. Univ., Manhattan (Diss. Abstr. 80-24236).
- 2. Browder, L.E. 1971. Pathogenic specialization in cereal rust fungi, especially *Puccinia recondita* f. sp. *tritici*: Concepts, methods of study and application. USDA Tech. Bull. No. 1432, p. 26.
- 3. Cherry, E., and C.E. Peet. 1966. An efficient device for the rapid collection of fungal spores from infected plants. Phytopathology. 56:1102-1103.
- 4. Dahmen, H., Th. Staub, and F.J. Schwinn. 1983. Technique for long-term preservation of phytopathogenic fungi in liquid nitrogen. Phytopathology. 73:241-246.
- 5. McMurtrey, J.E., III, and J.H. Elgin, Jr. 1984. Rust resistance. Pages 26-27 *In* Standard tests to characterize pest resistance in alfalfa cultivars. USDA Misc. Pub.No.1434.
- 6. Skinner, D.Z., and D.L. Stuteville. 1989. Influence of temperature on expression of resistance to rust in diploid alfalfa. Crop Sci. 29:675-677.