(toward) An Empirical Evaluation Of Genomic Selection In Perennial Ryegrass (*Lolium perenne* L.)

Marty Faville, Siva Ganesh, Roger Moraga, Zulfi Jahufer, Rob Elshire, Syd Easton, & Brent Barrett

NAAIC . TC . GBC
Lethbridge AB, Canada

marty.faville@agresearch.co.nz
BACKGROUND

Export value of pasture products to the NZ economy >$17.5 billion

Pasture feed base: perennial ryegrass/white clover mixed sward

Challenges for forages in pastures

• Meeting genetic potential of livestock (‘feed gap’)
• Intensification (herd size, stocking rate)
• Abiotic and biotic stresses
• Genotype x Site x Management = Complicated!

Improving the rate of genetic gain in forages is crucial for meeting the current and future needs of NZ farm systems

How can we best achieve this, and can markers & a multi-disciplinary team help?
WHERE WE ARE AT
SINGLE MARKERS
BIG EFFECTS
ECONOMIC?
Phenotype + Marker Selection for Ryegrass Yield

DM distribution in GA208

<table>
<thead>
<tr>
<th>Count</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average annual DM (g)

- **Marker+ polycross (n=10)**
 - 12.8 g DM (±1.10)
 - 3.46 GS (±0.32)

- **Marker- polycross (n=10)**
 - 12.2 g DM (±0.61)
 - 3.44 GS (±0.22)

Phenotypically equivalent
Barrett et al. (2009) Proc. 5th MBFT

Rye Grass DM Yield

![Graph showing ryegrass DM yield for 2011-12 and 2012-13.]

Clover Persistence

- 16% decrease
- 15% increase

Stolon Branching

- Base
- +Sel
- -Sel

Clover Seed Yield

- M+ 16.0
- M- 11.5

Barrett et al. (2009) Proc. 5th MBFT
WHERE WE ARE GOING

GS in a Plant Breeding Program

Training Population
- Elite lines informative for model improvement
- Phenotype (lines have already been genotyped)

Model Training Cycle
- Train prediction model

Genomic Selection

Breeding Population
- Advance lines with highest GEBV
- Make crosses and advance generations

Line Development Cycle
- Genotype

New Germplasm

Test varieties and release

Genomic selection reduces cycle time & cost by reducing frequency of phenotyping
Genomic Selection (GS)

Dense markers predict genomic-estimated breeding values of selection candidates in breeding programmes

- Ideally capture all of the QTL that contribute to variation in a trait
- Work directly in breeding populations, no prior QTL discovery needed

Genotyping-by-Sequencing (GBS) makes GS an option for ‘orphan’ forage species

- No other accessible SNP resources (e.g. chips)
- Reference genomes only now becoming available
- It helps to have the expert in the team!
Forage Value Index – Implications for Breeders!

New traits

Changing priorities

Heritabilities

Correlations

G x E & G x G interactions

Index Selection....
Further Challenges

Phenotyping: Scale and Quality

Computational / Statistical

Trait Data Priority

GxGxSxM = Complicated

Scale to Australasian level: Relationships & Data
Forage Breeding Model
Breeding Strategy & Operations to Optimise Gain per Unit Resource

FVI Economic Model

Bio-Physical Model (APSIM)

Define: Value of Forage

Estimate: FVI & Breeding Model in biophysical context

Forage Breeding Model

Calculate: Genetic Gain in FVI per Unit Resource
Empirical Work: Preliminary GEBVs In Ryegrass

- Populations GA194, PG1259 (n=211 x 4 reps in field, + DNA samples)

- Existing phenotypic datasets
 - Single site, ~ two years seasonal data
 - BLUPs for Vigour, DM production, Flowering Date

- Genotyping-by-sequencing (GBS)
 - c. 130K GBS tags
 - Filtering to SNPs

Calculate & Cross Validate GEBV’s
Genotyping-by-Sequencing: SNP Calls & GEBVs

SNPs called using UNEAK (non-reference genome) pipeline (IGD)
• 3141 SNPs

SNPs re-called using TASSEL (reference genome pipeline)
• Full but fragmented reference genome sorted into 12 pseudo-molecules based on rice genome, used for mapping the GBS tags (University of Aarhus, Denmark)
• 13885 SNPs, 10624 mapped to a pseudo-molecule
• SNP subset for two pseudo-molecules = 2659 SNPs

Statistics - GEBVs
• 1 vs 2 stage models
• 7 Models x 9 Imputation methods
• 3 marker densities
Example Output: 1 v. 2 Stage x Low v. High SNPs

Models
Single Stage
RR- Ridge regression.
RK- Reproducing Kernel
RF- Random Forest

Markers (TASSEL)
Low = 2,659
High = 13,855

At least for small datasets, statistical method matters!
CROSS VALIDATION ACCURACY

<table>
<thead>
<tr>
<th>Trait</th>
<th>UNEAK pipeline (3K SNPs)</th>
<th>REF pipeline (10K SNPs)</th>
<th>REF pipeline (2K SNPs, C1 & 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowering time</td>
<td>0.55 (0.0041)</td>
<td>0.57 (0.0039)</td>
<td>0.53 (0.0043)</td>
</tr>
<tr>
<td>Vigour score (annual)</td>
<td>0.35 (0.0074)</td>
<td>0.31 (0.0062)</td>
<td>0.26 (0.0108)</td>
</tr>
<tr>
<td>Dry matter (annual)</td>
<td>0.34 (0.0054)</td>
<td>0.29 (0.0067)</td>
<td>0.22 (0.0104)</td>
</tr>
</tbody>
</table>

More Markers ≠ Higher Accuracy

LD? Marker Data? Family Structure?
Ongoing Work

Assess relatedness/structure influence on GEBVs in this set

Further testing of statistical procedures and imputation methods

Reference genome-based SNP calling to obtain >20K SNPs
 • Evaluation of marker density on GS prediction accuracy
 • Mapping of GBS Tags, LD assessment
 • Full reference genome (University of Aarhus, Denmark)

Divergent selections from PG1259 and GA194 (low vs. high GEBV)
 • Field evaluation of progeny commencing 2014-15

Additional training population & datasets from 2014-15
 • Extension to wider breeding programmes
Breeding programme (AGRPWG Wrightson)

Ryegrass Training Population Development

Multiple breeding populations n=(12 – 16)

- GA194 100 plants
- GA256 100 plants
- GA221 100 plants
- FLp1106 100 plants
- FLp1207 100 plants

Polycross

Genotyping (optimised GBS pipeline)

Half-Sib Families (n=500)

- Single Row Phenotypes
 - Yield, Nutritive Value, Persistence
- Single plant phenotypes
 - Nutritive value, disease etc.
TRAINING POPULATION PHENOTYPING

Eight trials at five NZ locations established in 2013.

Half-Sib progeny rows (n>8000)

Emphasis on environmental replication over field replication
FIRST FULL YEAR OF TRAINING POPULATION

8,000+ half sib rows is an awesome resource!

Phenotyping bottlenecks!!

Challenges to standardise management and measurement

Focus on seasonal yield & forage quality / composition

>2,500 HS progeny rows through wet lab fibre chemistry, soluble carbohydrates, field and lab bench NIRS completed autumn 2014
Australasian Adapted Forage GS Model (GxE, Species)

- Seed Co. A Training Population
- Seed Co. B Training Population
- Seed Co. C Training Population

GS Prediction Tailored to Seed Co A
GS Prediction Tailored to Seed Co B
GS Prediction Tailored to Seed Co C, etc.

Etc. Etc.
Generalising To An Australasian Model

New Seed Firm Partnerships

Other Population Structures / Data Sources: individuals, families, bulks. Historic phenotypes?

Addressing the Phenotyping Bottleneck = technology + recruitment

Addressing the Computational Bottleneck = recruitment

Capability & Capacity: Field Breeding, Quantitative Genetics
Genomic Selection: Proposed Workstreams

- Deploy Clover
- Deploy Ryegrass
- Enable
- Guide
- Monitor
- Enhance
Final Comments

QTL-targeted MAS in forage breeding populations is workable, but not generally economic for key traits in ryegrass and white clover.

Genomic selection is a logical progression from single/multi-marker MAS and may accelerate genetic gain for complex traits... *but it ain’t easy!*

Upside: we’re in the field and working in large trials of family structured material.

Other species, traits, single gene markers, introgression all on the horizon.

How will we know if it worked? Robust baseline monitoring.
Acknowledgements

Tom Lyons
Benjamin Franzmayr
Jana Schmidt
Craig Anderson
Casey Flay
Tony Hilditch
Won Hong
Jessica O'Connor
Jason Trethewey

Mike Casler - USDA

Torben Asp